地すべり抑止鋼管杭の計算(アンカー付き抑え杭タイプ)

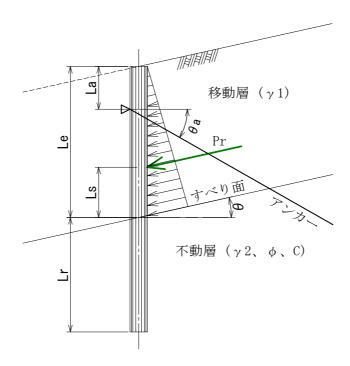
計算書タイトル	○○地区地すべり検討
計算書サブタイトル	検討断面 NO.10+0

地すべり抑止杭の設計に当っては、以下の文献に準拠するものとした。

- ・「新版 地すべり鋼管杭設計要領」(地すべり対策技術協会)
- •「道路土工-切土工•斜面安定工指針」(日本道路協会)
- ·「道路橋示方書·同解説 IV 下部構造編」(日本道路協会)

1. 計算条件

(1) 地すべり諸元


・必要抑止力Pr =333.3 (kN/m)・すべり面の傾斜角θ =15.000 (°)・地すべり荷重の分布形状: 三角形分布荷重

(2) 地盤条件

・不動層の変形係数 $E_0 = 126,000 \, (kN/m^2)$ ・試験方法による係数 $\alpha = 1$

変形係数 E₀と α

変形係数 E ₀ の推定方法	係数 α
及形所数 □() * 기世足刀 伍	常時
孔内水平載荷試験で求めた変形係数	4
供試体の一軸、三軸試験から求めた変形係数	4
N値からE ₀ =2800Nで推定した変形係数	1

抑え杭断面図(模式図)

(3) 抑止杭諸元

・地すべり抑止杭の設計タイプ

・抑止杭の有効長

・地すべり合力作用点高さと 杭の有効長の比(α e=Ls/Le)

・地すべり合力作用点高さ

•抑止杭の列数

・抑止杭の間隔

Type = 抑え杭

Le = 10.000 (m)

 $\alpha \, {\rm e} = 1/3 = 0.333$

Ls = α e • Le = 3.333 (m)

 $N = 1 \quad (\overline{\beta})$

W = 1.500 (m)

(4) 鋼管杭諸元

・鋼管杭の材質

・鋼管杭の強度種別

・許容曲げ応力度

・許容せん断応力度

・鋼管杭の外径

•鋼管杭の肉厚

・鋼管杭の断面積

・鋼管杭の断面2次モーメント

・鋼管杭の断面係数

・鋼管杭の弾性係数

・鋼管杭の曲げ剛性

その他

: 短期強度

 $\sigma a = 280,000 \text{ (kN/m}^2)$

 $\tau a = 160,000 \text{ (kN/m)}$

D = 300.0 (mm)

t = 28.0 (mm)

 $A = 2.393E-02 (m^2)$

 $I = 2.240E-04 \text{ (m}^4\text{)}$

 $Z = 1.490E-03 \text{ (m}^3\text{)}$

 $E = 2.000E + 08 (kN/m^2)$

 $EI = 44,800 \text{ (kN/m}^2)$

(5) アンカー工諸元

・アンカー位置(杭頭からの距離)

1.000 (m)

・すべり面の傾斜角

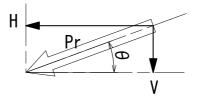
 $\theta = 30.000 \, (^{\circ})$

La =

2. 作用荷重の計算

抑止杭1本に作用する荷重は次式により算定する。

•水平力


H = $Pr \times cos \theta \times W / N$ = $333.3 \times cos 15.00 \times 1.500 / 1.0$ = $482.9 \text{ (kN} \cdot \text{Å})$

•鉛直力

 $V = Pr \times \sin \theta \times W / N$ = 333.3×\sin 15.00× 1.500 / 1.0 = 129.4 (kN·\pi)

> θ: すべり面傾斜角(θ) W: 抑止杭の間隔(m) N: 抑止杭の列数(列)

ここに、Pr: 必要抑止力 (kN/m)

3. 水平地盤反力係数の計算

抑止杭の断面力、変位および根入れ長算定に必要な地盤反力係数(Kh)は、「道路橋示方書・同解説 IV 下部構造編 p285~287)」に示された以下の算定式で求める。

$$kh = kh_0 \left(\frac{Bh}{0.3}\right)^{-3/4} \qquad \cdots \qquad \overrightarrow{\pi}(1)$$

$$kh_0 = \frac{1}{0.3} \cdot \alpha \cdot E_0 \qquad \cdots \qquad \overline{x}(2)$$

Bh =
$$\sqrt{\frac{D}{\beta}}$$
 $\cdots \vec{x}(3)$

$$\beta = \sqrt[4]{\frac{\text{kh } \cdot \text{D}}{4 \cdot \text{E} \cdot \text{I}}} \qquad \cdots \qquad \vec{x}(4)$$

ここに、

kh:水平方向地盤反力係数(kN/m³)

kh₀: 直径30cmの剛体円板による平板載荷試験に相当する

水平方向地盤反力係数

Bh: 杭の換算載荷幅 (m)

β: 杭の特性値 (m⁻¹)

D: 杭外径 (m)

α:地盤反力係数の推定に用いる係数

E₀: 不動地盤の変形係数 (kN/m²)

E: 杭のヤング係数 (kN/m²)

I: 杭の断面2次モーメント (m⁴)

水平地盤反力係数は上の式(1)~式(4)を整理した下記の式(5)より求める。

$$kh = \frac{(\alpha \cdot E_0)^{32/29}}{0.3^{8/29} \times (4 \cdot E \cdot I)^{3/29} \times D^{9/29}} \cdots \overrightarrow{\pi}(5)$$

$$= \frac{424,614.758}{1.726}$$

$$= 246,072 \text{ (kN/m}^3)$$

4. 杭の特性値の計算

杭の特性値(β)は以下の式で求める。

$$\beta = \left(\begin{array}{c} \text{kh} \cdot \text{D} \\ \hline 4 \cdot \text{E} \cdot \text{I} \end{array}\right)^{1/4}$$

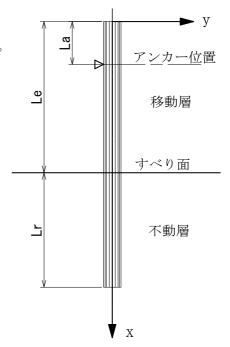
$$= \left(\begin{array}{c} 246,072 \times 0.3 \\ \hline 4 \times 44,800 \end{array}\right)^{1/4}$$

$$= \left(\begin{array}{c} 73,822 \\ \hline 179,200 \end{array}\right)^{1/4}$$

$$= 0.8011 \text{ (m}^{-1})$$

5. 断面計算式

(1) 杭の基本式


弾性床上の梁の一般式は、以下のChangの式で表される。

[移動層(地盤反力なし)]

$$E \cdot I \cdot d^4 y / dx^4 = a \cdot x + b$$

「不動層(地盤反力あり)]

$$E \cdot I \cdot d^4 y / dx^4 + Es \cdot y = 0$$

上記の微分方程式を解いた一般式は、杭の各区間ごとで次のようになる。

①移動層(杭頭~アンカー区間)

・たわみ方程式

$$y1 = C_1 + C_2 \cdot x + C_3 \cdot x^2 + C_4 \cdot x^3 + a/(120EI) \cdot x^5$$
 · · · \vec{x} (1)

•たわみ角

i 1= y' =
$$C_2 + 2C_3 \cdot x + 3C_4 \cdot x^2 + a/(24EI) \cdot x^4$$
 · · · \pm (2)

・モーメント

$$M1 = -EIy'' = -2EIC_3 - 6EIC_4 \cdot x - a/6 \cdot x^3$$
 ··· \pi(3)

・せん断力

$$S1 = -Ely''' = -6ElC_4 - a/2 \cdot x^2$$
 ··· \sharp (4)

②移動層(アンカー~すべり面区間) xla = x - La

・たわみ方程式

y2 =
$$C_5 + C_6 \cdot x \ln + C_7 \cdot x \ln^2 + C_8 \cdot x \ln^3 + b/(24EI) \cdot x \ln^4 + a/(120EI) \cdot x \ln^5$$

•たわみ角

i 2= y' =
$$C_6 + 2C_7 \cdot x \ln + 3C_8 \cdot x \ln^2 + b/(6EI) \cdot x \ln^3 + a/(24EI) \cdot x \ln^4$$

・モーメント

$$M2 = -EIy'' = -2EIC_7 - 6EIC_8 \cdot xla - b/2 \cdot xla^2 - a/6 \cdot xla^3$$
 ··· \sharp (7)

・せん断力

$$S2 = -EIy''' = -6EIC_8 - b \cdot xla - a/2 \cdot xla^2$$
 ··· \sharp (8)

③不動層(すべり面以深)

xle = x - Le

・たわみ方程式

$$y3 = e^{-\beta x le} (C_0 \cdot \cos \beta x le + C_{10} \cdot \sin \beta x le)$$
 ··· $\pm (9)$

•たわみ角

$$i3 = y' = -\beta e^{-\beta x le} \{ (C_9 - C_{10}) \cos \beta x le + (C_9 + C_{10}) \sin \beta x le \}$$
 ... $\pm (10)$

・モーメント

・せん断力

S3 = -EIy''' = -2EI
$$\beta^3 e^{-\beta x le} \{ (C_9 + C_{10}) \cos \beta x le + (C_{10} - C_9) \sin \beta x le \}$$
 ... $\overrightarrow{\pm}$ (12)

ここに、

x: 杭頭を原点とした場合の深度

y:深度 x における杭の変位

EI: 杭の曲げ剛性

β: 杭の特性値

C₁~C₁₀: 任意定数

xla: アンカー位置からの深度 (= x - La)

xle: すべり面からの深度 (= x - Le)

a:移動層に作用する分布荷重の勾配 a= 2H/Le²

 $a = 2H/Le^2 = 2 \times 482.9 / 10.000^2 = 9.658$

b: 計算始端における荷重強度

①区間 b= 0.000 (kN/m·本)

②区間 b= a·La= 9.658×1.000= 9.658 (kN/m·本)

H: 杭1本に作用する水平力(kN・本)

Le: 抑止杭の有効長 (m)

La: 杭頭からアンカー位置までの距離 (m)

(2) アンカー付き抑え杭の基本式

アンカー付き抑え杭の境界条件は以下の通りである。

[x=0(杭頭)]

• M1 = 0

・・・ 条件1 (杭頭部のモーメントがゼロ)

• S1 = 0

· · · 条件2 (杭頭部のせん断力がゼロ)

[x=La(アンカー位置)]

• y1 = 0

・・・ 条件3 (アンカー位置の変位がゼロ)

• y2 = 0

・・・ 条件4 (アンカー位置の変位がゼロ)

• M1 = M2

・・・ 条件5 (アンカー位置のモーメントが等しい)

• i1 = i2

・・・ 条件6(アンカー位置のたわみ角が等しい)

[x = Le (すべり面)]

• y2 = y3

・・・ 条件7 (すべり面の変位量が等しい)

• i2 = i3

・・・ 条件8 (すべり面のたわみ角が等しい)

• M2 = M3

・・・ 条件9 (すべり面のモーメントが等しい)

• S2 = S3

・・・ 条件10 (すべり面のせん断力が等しい)

(3) 定数の算定

・条件1と式(1)より、以下の式を得る

・条件2と式(2)より、以下の式を得る

・条件4と式(5)より、以下の式を得る

$$C_5 = 0.000$$

·条件5と式(3)、式(7)より、以下の式を得る

$$-a \cdot La^3 / 6 = -2EIC_7$$
 \$\tau_7 \quad C_7 = $a \cdot La^3 / (12EI) = 1.7965E - 05$

条件3と式(1)より、以下の式を得る

$$C_1 + C_2 \cdot La + a/(120EI) \cdot La^5 = 0 \cdot \cdot \cdot \cdot \ddagger(A)$$

·条件6と式(2)、式(6)より、以下の式を得る

$$C_2 + a/(24EI) \cdot La^4 = C_6 \cdot \cdot \cdot \cdot 式(B)$$

・条件7と式(5)、式(9)より、以下の式を得る

$$C_6 \cdot \text{Lea} + C_7 \cdot \text{Lea}^2 + C_8 \cdot \text{Lea}^3 + \text{b}/(24\text{EI}) \cdot \text{Lea}^4 + \text{a}/(120\text{EI}) \cdot \text{Lea}^5 = C_9 \quad \cdot \cdot \cdot \cdot \vec{x}(C)$$

条件8と式(6)、式(10)より、以下の式を得る

$$C_6 + 2C_7 \cdot \text{Lea} + 3C_8 \cdot \text{Lea}^2 + \text{b/(64EI)} \cdot \text{Lea}^3 + \text{a/(24EI)} \cdot \text{Lea}^4 = \beta (-C_9 + C_{10}) \cdot \cdots 式(D)$$

·条件9と式(7)、式(11)より、以下の式を得る

$$-2EIC_7 - 6EIC_8$$
•Lea $-$ b/2•Lea² $-$ a/6•Lea³ $=$ 2EI β ²•C₁₀ ···・式(E)

・条件10と式(8)、式(12)より、以下の式を得る

- 6EIC
$$_8$$
 - b・Lea - a/2・Lea 2 = -2EI β ³・(C $_9$ + C $_{10}$) ・・・・式(F) ここに、 Lea = Le - La = 10.000 - 1.000 = 9.000 (m)

未知数である、C1、C2、C6、C8~C10 は、式(A)~式(F)の6元連立方程式を解いて求める。

係数行列を A、変数ベクトルを X、定数ベクトルを C とすれば、連立方程式は、C=A・Xの行列式で表すことができる。 変数ベクトル X は、Aの逆行列 A^{-1} にCを掛けることで求めることができる。 $(X=A^{-1}\cdot C)$

定数ベクトルC 係数行列 A 変数ベクトルX
$$\begin{pmatrix} K1 \\ K2 \\ K6 \\ K8 \\ K9 \\ K10 \end{pmatrix} = \begin{pmatrix} 1 & La & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & Lea & Lea^3 & -1 & 0 \\ 0 & 0 & 1 & 3Lea^2 & \beta & -\beta \\ 0 & 0 & 0 & -6Lea & 0 & -2\beta^2 \\ 0 & 0 & 0 & -6 & 2\beta^3 & 2\beta^3 \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ C_6 \\ C_8 \\ C_9 \\ C_{10} \end{pmatrix}$$

定数ベクトル K1~K6は以下の値である。

K1=	$- a/(120EI) \cdot La^5 =$	-1.7965E-06
K2=	$- a/(24EI) \cdot La^4 =$	-8.9825E-06
K6=	$-C_7 \cdot Lea^2 - b/(24EI) \cdot Lea^4 - a/(120EI) \cdot Lea^5 =$	-1.6647E-01
K8=	$-2C_7 \cdot \text{Lea} - \text{b/(6EI)} \cdot \text{Lea}^3 - \text{a/(24EI)} \cdot \text{Lea}^4 =$	-8.5451E-02
K9=	$2C_7 + b/(2EI) \cdot Lea^2 + a/(6EI) \cdot Lea^3 =$	3.4960E-02
K10=	$b/EI \cdot Lea + a/(2EI) \cdot Lea^2 =$	1.0671E-02

マトリックス表(6元連立方程式)

<u> </u>	<u>、17777、3、(070)建立77(建20)</u>					
	係数項 (A)					定数項
C_1	C_2	C_6	C ₈	C_9	C ₁₀	(C)
1.00000	1.00000	0.00000	0.00000	0.00000	0.00000	-1.7965E-06
0.00000	1.00000	-1.00000	0.00000	0.00000	0.00000	-8.9825E-06
0.00000	0.00000	9.00000	729.00000	-1.00000	0.00000	-1.6647E-01
0.00000	0.00000	1.00000	243.00000	0.80110	-0.80110	-8.5451E-02
0.00000	0.00000	0.00000	-54.00000	0.00000	-1.28352	3.4960E-02
0.00000	0.00000	0.00000	-6.00000	1.02823	1.02823	1.0671E-02

逆行列計算表

是自为时并 农						
逆マトリックス表 (A ⁻¹)					解(X)	
1.0000E+00	-1.0000E+00	-1.4623E-01	3.1610E-01	-5.0852E-01	-3.8850E-01	-2.4584E-02
0.0000E+00	1.0000E+00	1.4623E-01	-3.1610E-01	5.0852E-01	3.8850E-01	2.4582E-02
0.0000E+00	0.0000E+00	1.4623E-01	-3.1610E-01	5.0852E-01	3.8850E-01	2.4591E-02
0.0000E+00	0.0000E+00	-4.6411E-04	4.1770E-03	-5.5757E-03	-3.7057E-03	-5.1414E-04
0.0000E+00	0.0000E+00	-2.2234E-02	2.0011E-01	5.1199E-01	7.9502E-01	1.2985E-02
0.0000E+00	0.0000E+00	1.9526E-02	-1.7573E-01	-5.4453E-01	1.5591E-01	-5.6068E-03

以上の計算より求めた定数を以下に示す。

$C_1 =$	-2.4584E-02	$C_6 =$	2.4591E-02
$C_2 =$	2.4582E-02	$C_7 =$	1.7965E-05
$C_3 =$	0.0000E+00	$C_8 =$	-5.1414E-04
$C_4 =$	0.0000E+00	$C_9 =$	1.2985E-02
$C_5 =$	0.0000E+00	$C_{10} =$	-5.6068E-03

- 5. 最大曲げモーメントの計算
- (1)すべり面上部(アンカー位置~すべり面区間)
 - 1) 最大曲げモーメントが生じる深さの計算 (アンカー位置からの深さ)

最大曲げモーメントが生じる深さは以下の式により算定する。

2) 最大曲げモーメントの計算

最大曲げモーメントは以下の式により算定する。

M1max=
$$-2EIC_7 - 6EIC_8 \cdot xm1 - b/2 \cdot xm1^2 - a/6 \cdot xm1^3$$

= 375.91 (kN·m)

- (2)すべり面下部(不動層部)
 - 1) 最大曲げモーメントが生じる深さの計算(すべり面からの深さ)

最大曲げモーメントが生じる深さは以下の式により算定する。

2) 最大曲げモーメントの計算

最大曲げモーメントは以下の式により算定する。

C₇~C₁₀: 基本式の定数

M2max=
$$-2EI \beta^2 \cdot e^{-\beta \times lm2} (-C_{10} \cdot \cos \beta \times m2 + C_9 \cdot \sin \beta \times m2)$$

= $-394.15 \text{ (kN} \cdot \text{m)}$

(3)最大曲げモーメント

6. 最大せん断力の計算

せん断力は、アンカー位置、すべり面および不動層内の3箇所で計算し、最大値を採用する。

1) アンカー位置 (xla = 0)

Smax1=
$$-6EIC_8 - b \cdot xla - a/2 \cdot xla^2$$

= $-6EIC_8$
= 138.20 (kN)

2) すべり面 (xla = Le - La = Lea)

Smax2=
$$-6EIC_8 - b \cdot xla - a/2 \cdot xla^2$$

= $-6EIC_8 - b \cdot Lea - a/2 \cdot Lea^2$
= -339.87 (kN)

- 3) 不動層内
 - a) 最大せん断力が生じる深さの計算(すべり面からの深さ)

不動層部で最大せん断力が生じる深さは次式で算定する。

b) 最大せん断力の計算

最大せん断力は以下の式により算定する。

Smax3= -2EI
$$\beta^3$$
 e^{- β xs} {(C₉+C₁₀) cos β xs + (C₁₀-C₉) sin β xs }
= 203.59 (kN)

4) 最大せん断力

3箇所で求めたせん断力を比較して、大きい値を採用する。

EI: 杭の剛性 = 44,800 (kN/㎡) β : 杭の特性値 = 0.8011 (m^{-1})

C₈~C₁₀: 基本式の定数

7. 設計アンカー力の計算

(1) アンカー支点反力 Th

$$Th = |-6EIC_8 + b \cdot La/2|$$

$$= |-6 \times 4.4800E + 04 \times -5.1414E - 04 + 9.658 \times 1.000 / 2|$$

- = 143.03 (kN)
- (2) 設計アンカー力 Ta

Ta = Th
$$/ \cos \theta$$
 a

$$= 143.03 / \cos(30.00)$$

- = 165.16 (kN)
- (2) アンカーによる軸力 Tv

$$Tv = Th \cdot tan \theta a$$

$$= 143.03 \times \tan(30.00)$$

$$=$$
 82.58 (kN)

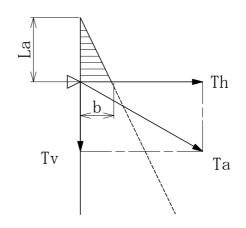
(2) 杭に作用する鉛直力 N

$$N = V + Tv$$

$$= 129.40 + 82.58$$

$$=$$
 211.98 (kN)

ここに、


C₈: 基本式の定数

b:アンカー位置における荷重強度(kN/m)

La: 杭頭からアンカーまでの距離 (m)

 θ a:アンカー傾角(°)

V: 地すべり力の鉛直成分(kN)

8. 応力度の照査

(1) 曲げ応力度の照査

鋼材の曲げ応力度は以下の式により算定する。

$$\sigma = \frac{|\text{Mmax}|}{Z}$$
 + $\frac{N}{A}$
 $= \frac{394.15}{1.490E-03}$ + $\frac{211.98}{2.393E-02}$
 $= 264,530$ + $8,858$
 $= 273,389 \text{ (kN/m}^2\text{)} \leq \sigma \text{ sa} = 280,000 \text{ (kN/m}^2\text{)}$ [O.K]

ここに、
Mmax:最大曲げモーメント = 394.15 (kN・m)
N:杭1本に作用する鉛直力 = 211.98 (kN)
Z:杭の断面係数 = 1.490E-03 (m³)
A:杭の断面積 = 2.393E-02 (m²)

(2) せん断応力度の照査

鋼材のせん断応力度は以下の式により算定する。

$$au = \frac{\alpha_0 \times \text{Smax}}{\text{A}}$$
 $= \frac{2.00 \times 339.87}{2.393\text{E}-02}$
 $= 28,405 \text{ (kN/m}^2\text{)} \leq \tau \text{ a} = 160,000 \text{ (kN/m}^2\text{)} \qquad \text{[O.K]}$
ここに、
 $\text{Smax}: 最大せん断力 = 339.87 \text{ (kN·m)}$
 $\text{A}: 杭の断面積 = 2.393\text{E}-02 \text{ (m}^2\text{)}$
 $\alpha_0: せん断応力補正係数 2.00 \text{ (kN)}$
 $(-般には、 α_0 =2.0として良い)$

9. 根入れ長および杭全長の計算

(1) 必要根入れ長の計算

抑止杭の必要根入れ長は以下の式から求まる値と3.0m(最低長)の何れか大きい値とする。

$$Lrc \ge \frac{k \cdot \pi}{\beta}$$

$$= \frac{1.50 \times 3.1416}{0.8011}$$

$$= 5.88 \text{ (m)}$$
 $Lrn= \max \text{ (Lrc , 3.0)}$

$$= \max \text{ (5.88 , 3.0)}$$

$$= 5.88 \text{ (m)}$$

$$= 6.881 \text{ (m)}$$

$$= 6.8011 \text{ (m}^{-1})$$

(2) 抑止杭全長の計算

抑止杭の全長は、50cm単位のラウンド長となるように決定する。

(3) 根入れ長の計算

抑止杭の根入れ長は全長から杭の有効長を引いて求める。

$$Lr = L - Le$$

= 16.00 - 10.000
= 6.000 (m)

10. 変位の計算

(1) 杭頭変位量の計算

杭頭部 (x=0) の変位量は次式により算定する。

$$\delta = |C_1 + C_2 \cdot x + a/(120EI) \cdot x^5|$$

$$= |C_1|$$

$$= 24.6 \text{ (mm)}$$

ここに、

δ:抑止杭頭部の変位量 (mm)

a:移動層に作用する分布荷重の勾配 a= 2H/Le²

EI: 杭の剛性

C₁、C₂: 基本式の定数

(2) 最大変位量の計算

- ・最大変位は、アンカー位置~すべり区間に発生する。
- ・たわみ角が0となるときに、変位量は最大となる。

たわみ角の方程式を以下に示す。

$$i = C_6 + 2C_7 \cdot xla + 3C_8 \cdot xla^2 + b/(6EI) \cdot xla^3 + a/(24EI) \cdot xla^4$$

$$C_6 + 2C_7 \cdot xla + 3C_8 \cdot xla^2 + b/(6EI) \cdot xla^3 + a/(24EI) \cdot xla^4 = 0.0000$$

たわみ角がゼロとなるxlaは、上記の4次方程式を解いて求める。

最大変位量は以下の式で求める。

$$\delta \max = C_5 + C_6 \cdot \text{xla} + C_7 \cdot \text{xla}^2 + C_8 \cdot \text{xla}^3 + \text{b}/(24\text{EI}) \cdot \text{xla}^4 + \text{a}/(120\text{EI}) \cdot \text{xla}^5$$

$$= 71.2 \text{ (mm)}$$

ここに、

δ max: 最大変位量 (mm)

a:移動層に作用する分布荷重の勾配 a= 2H/Le²

b:アンカー位置における荷重強度(kN/m)

EI: 杭の剛性

C₅~C₈: 基本式の定数

11. 根入れ地盤の降伏破壊検討

抑止杭前面の受働土圧Qpが、抑止杭に作用する水平荷重より大きいことを照査する。 抑止杭前面の受働土圧Qpは、次式により求める。

Qp = 3D {
$$(1/2 \cdot \gamma \ 2 \cdot \text{Lr}^2 + \gamma \ 1 \cdot \text{Le} \cdot \text{Lr}) \cdot \text{Kp} + 2 \cdot \text{C} \cdot \text{Lr} \cdot \sqrt{\text{Kp}} } / \text{Fs}$$

= $3 \times 0.3000 \times \{ (1/2 \times 20.0 \times 6.00^2 + 18.0 \times 10.00 \times 6.00) \times 3.690 + 2 \times 50.0 \times 6.00 \times \sqrt{3.690}) / 2.00$

Qp ≧ H となるので、地盤の降伏破壊に対して安全である。

= 2,909.77 (kN) $\ge H = 482.90 \text{ (kN)}$

ここに、

Qp: 杭前面の受働土圧(kN)

D:	鋼管杭の外径 =	0.3000	(m)
γ 1 :	移動層の単位体積重量 =	18.0	(kN/m^3)
$\gamma2$:	不動層の単位体積重量 =	20.0	(kN/m^3)
ϕ :	不動層の内部摩擦角 =	35.0	(°)
C:	不動層の粘着力 =	50.0	(kN/m^2)
Le:	移動層の杭長 =	10.000	(m)
Ler:	不動層の杭長 =	6.000	(m)
Fs:	安全率 =	2.0	
Kp:	不動層の受働土圧係数		

 $Kp = tan^2 (45^\circ + \phi/2) = 3.690$ H: 抑止杭に作用する水平力 = 482.90 (kN)

12. 杭の計算式の妥当性

1) 有限長杭と半無限長杭の使い分け

本計算は、半無限長杭の計算式を用いている。

「新版 地すべり鋼管杭設計要領」に示された 設計上の杭型式の区分を表-1に示す。本表によると、 β ・Lr=3を有限長杭と半無限長杭の境界としている。

表-1 有限長杭と半無限長杭の区分表

適用する杭の計算式	β·Lr					
週出するが2月昇八	0	1	2	3	4	5
有限長の計算式 (β·Lr<3)						
半無限長の計算式 (β・Lr≧3)						
マンフ の せのはから	÷	0.0011	/ -1\			

ここに、β:杭の特性値 = Lr:杭の根入れ長 =

 $0.8011 \text{ (m}^{-1})$ 6.000 (m)

 β •Lr= 0.8011×6.000

= 4.807 (m)

 β ・Lr≥3.0となるので、半無限長杭の計算式は妥当である。

2) 曲げ杭とケーソン(剛体杭)の使い分け

本計算は、曲げ杭(抑え杭)として計算を行っている。 「道路土工-切土工・斜面安定工指針 (p.423)」には次の記述がある。

- β •Lr ≤ 2 の場合はケーソン(剛体杭)として設計する。
- $\cdot \beta \cdot Lr > 2$ の場合は曲げ杭として設計する。

 β •Lr= 0.8011×6.000

= 4.807 (m)

 β ・Lr>2 となるので、曲げ杭としての計算は妥当である。

13. 計算結果の総括表

計算条件一覧表				
	項目	記号	単位	数 値
	必要抑止力	Pr	kN/m	333.300
	すべり面傾斜角	θ	度	15.000
地すべり諸元	地すべり荷重の分布形状	_	_	三角形分布荷重
	地すべり荷重の作用高さ	Ls	m	3.333
	合力作用点係数 (α e=Ls/Le)	αе	_	0.333
アンカー条件	杭頭からのアンカー位置	La	m	1.000
アンガー条件	アンカー傾角	θа	度	30.000
	抑止杭の有効高さ	Le	m	10.000
鋼管杭の配置	抑止杭の間隔	W	m	1.500
	抑止杭の列数	N	列数	1
	鋼管杭の規格	その他		
	設計強度の設定	_	_	短期強度
鋼管杭の規格	弾性係数	Е	kN/m²	2.000E+08
	許容曲げ応力度	σа	kN/m²	280,000
	許容せん断応力度	τа	kN/m²	160,000
	外径	D	mm	300
	肉厚	t	mm	28
鋼管杭の断面諸量	断面積	А	m²	2.393E-02
	断面2次モーメント	I	m ⁴	2.240E-04
	断面係数	Z	m^3	1.490E-03
根入れ地盤条件	地盤の変形係数	E ₀	kN/m²	2.000E+08
水八40地盆米件	試験方法による係数	α	_	1
根入れ長補正係数	$Lr = k \cdot \pi / \beta$	k	_	1.50

計算結果一覧表					
	記号	単位	数 値		
設計外力	水平力	Н	kN	482.90	
以口フトノノ	鉛直力	V	kN	129.40	
鋼管杭の断面力	最大曲げモーメント	Mmax	kN•m	394.15	
対応 目 が マカロ ロフナ	最大せん断	Smax	kN	339.87	
鋼管杭の応力度	曲げ応力度	σ	kN/m²	273,389	
	せん断応力度	τ	kN/m²	28,405	
応力度照査	曲げ応力度		$\sigma \le \sigma a$ •	•••• О.К.	
心刀及無重	せん断応力度	τ ≦ τ a ····· O.Κ.			
	アンカー支点水平反力	Th	kN	143.03	
設計アンカー力	設計アンカー力	Ta	kN	165.16	
	アンカー力の鉛直成分	Tv	kN	82.58	
	不動層必要根入れ長	Lrn	m	5.880	
 抑止杭長	不動層設計根入れ長	Lr	m	6.000	
孙亚尔达	移動層有効長	Le	m	10.000	
	抑止杭全長 (L = Le + Lr)	L	m	16.000	
杭頭変位量		δ	mm	24.6	
地盤の	杭前面の受働土圧	Qp	kN	2,909.77	
降伏破壊検討	降伏破壊に対する安定照査	Qp ≧ H (水平力) ····· O.K.		力) · · · · O.K.	
	判定境界値 (β •Lr)	β •Lr	_	4.807	
杭の計算式	半無限長杭計算式の妥当性	$\beta \cdot Lr \ge 3.0 \cdot \cdots \cdot O.K$			
	曲げ杭としての妥当性	$\beta \cdot Lr > 2.0 \cdot \cdots \cdot O.K.$			

変位・断面力図

変位図	曲げモーメント図	せん断力図
δ max= 71.2 (mm)	Mmax= 394.150 (kN⋅m)	Smax= 339.870 (kN⋅m)
X= 5.557 (m)	X= 10.472 (m)	X= 10.000 (m)
0.0	0.0	0.0
2.0	2.0	2.0
4.0	4.0	4.0
6.0	6.0	6.0
8.0	8.0	8.0
10.0	10.0	10.0
12.0	12.0	12.0
14.0	14.0	14.0
-200.0	600.0 400.0 200.0 0.0 -200.0 -600.0	16.0 200.0 -200.0